
This is a summary of my notes on operating systems file allocation methods. In the context of
operating systems file allocation refers to managing files on disk such that disk space is effectively
utilized and files are accessed quickly.

Contiguous Allocation
1.

1. All blocks of the file are consecutive on disk

2. Deleting files leaves gaps

3. Compacting disk can be very slow

4. Simple and efficient indexing

5. Random access well supported

6. Difficult to grow: need to preallocate which wastes space

7. Easy to map from logical to physical address

Let us assume we are going to read some position (pos) in a file. Assuming a block size of (1024)
here is how to map from logical to physical address:

1

2

Block number on disk = file start block number + (pos/1024)

Offset in block = pos%1024

Linked Allocation
1.

1. Linked list of file blocks

2. Blocks can be scattered on disk

3. No limit on file size

4. File can grow easily

5. Random access well supported

6. Random access is not easy

Using the same assumptions as before here is how to map from logical to physical address:

1

2

3

4

5

6

block = start

for (j = 0; j < pos/1024; j++)

{

 block = block->next

}

Offset in block = pos%1024

Linked Allocation Table in RAM
Same as the previous file allocation method but the table resides in memory. It is faster but need to
copy the table to disk at some point and keep both copies consistent.

Index Block Allocation
1.

1. File block addresses are stored in an array which is stored in a disk block

2. Directory has a pointer to index block

3. Both random and sequential access are easy

4. File size limitation depends on array size for example if we have (256) pointers in the index
block then the maximum file size will be 256KB assuming 1KB data blocks

5. Space utilization is good

6. Files can grow or shrink easily

Using the same assumptions as before here is how to map from logical to physical address:

1

2

block = index[pos/1024]

offset = pos%1024

Linked Index Block Allocation
1.

1. Similar to linked file blocks but using index blocks instead of data blocks

2. Good for large files

3. Both random and sequential access are easy

4. Random access is slow for large files

Using the same assumptions as before and assuming an index block size of 256 here is how to map
from logical to physical address:

1

2

3

4

5

6

7

8

index = start

block num = pos/1024

for (j = 0; j < block num/255; j++)

{

 index = index->next

}

block = index[block num%255]

offset = pos%1024

Two Level Index Block Allocation
1.

1. Allow larger files by creating an index of index blocks

2. Overhead is now at least two blocks per file

Using the same assumptions as before here is how to map from logical to physical address:

1

2

3

4

block num = pos/1024

index = start[block num/256]

block = index[block num%256]

offset = pos%1024

Block Allocation with Extents
1. Reduce space consumed by index pointers because often consecutive blocks in file are

sequential on disk

2. Store block and count instead of block and index

3. Faster read and write but complex look up

Summary
Here is a tabular summary of what we have mentioned:

Algorithm Properties

Contiguous Allocation All blocks of the file are consecutive on disk

Deleting files leaves gaps

Compacting disk can be very slow

Simple and efficient indexing

Random access well supported

Algorithm Properties

Difficult to grow

Easy to map from logical to physical address

Linked Allocation Linked list of file blocks

Blocks can be scattered on disk

No limit on file size

File can grow easily

Random access well supported

Random access is not easy

Linked Allocation Table in

RAM

Fast

Table resides in memory

Need to copy the table to disk and keep both copies consistent

Index Block Allocation File block addresses are stored in an array which is stored in a disk

block

Directory has a pointer to index block

Both random and sequential access are easy

File size limitation depends on array size

Space utilization is good

Files can grow or shrink easily

Linked Index Block Allocation Similar to linked file blocks but using index blocks instead of data

blocks

Good for large files

Both random and sequential access are easy

Random access is slow for large files

Two Level Index Block

Allocation

Allow larger files by creating an index of index blocks

Overhead is now at least two blocks per file

Block Allocation with Extents Reduce space consumed by index pointers

Store block and count instead of block and index

Faster read and write but complex look up

Was it a useful article ? if so, please use the comments section below for questions, corrections or
feedback. Thanks for reading.

